Q elastic

Building a data foundation
for modern observabillity

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

https://www.elastic.co/

Table of contents

The case for telemetry data to manage
your cloud applications

Types of telemetry and observability data

Logs: a primary signal for observability

Unstructured and semi-structured logs
Structured logs

Log volumes and “signal to noise”

Metrics: time-series data for system behavior

Counters

Accumulators

Usage metrics

Utilization or ratio metrics

Aggregation metrics

Traces: end-to-end visibility into your application

Transactions

Spans

elastic.co

10

12

15
15
15
16
16

18
20
20

Continuous profiling: the fourth pillar
of observability

Stacktraces

Flamegraphs

Synthetic monitoring: understanding
customer journeys

OpenTelemetry: the future of observability
OpenTelemetry and its impact on observability data
Open standards with Semantic Conventions (SemConv)

Future of OpenTelemetry and SemConv with Elastic

Common Schema (ECS)

Building a unified observability
platform with your data

22

23
24

26

28
28
29

31

32

https://www.elastic.co/

The case for telemetry data to
manage your cloud applications

Modern application architectures are distributed and run
hundreds of different services in a hybrid environment. They're
running in multiple locations, on different cloud providers, and
even on different continents. As software systems get more
compley, it's imperative to collect and observe telemetry data,
enabling you to understand the components in the system and
the interactions between them, and to triage and act upon any
problems that may arise.

Telemetry in software systems generally refers to the

collection of data relevant to the performance of applications,

services, and the infrastructure that they run on. Effectively

collecting and storing telemetry data helps you make the most

of your observability solution. Missing or inconsistent data I I I
makes it harder to troubleshoot future application issues.

This ebook will take you through the basics of telemetry and
observability data, then show you how emerging projects like
OpenTelemetry are shaping industry standards to transform
modern observability platforms.

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

https://www.elastic.co/

Types of telemetry
and monitoring data

When monitoring applications and infrastructure,
telemetry data starts with four main types: logs, metrics,
profiling, and traces. All four signals provide valuable
insights for developers, architects, DevOps, and site
reliability engineers (SREs). Combined with profiling and
newer observability data types, these four golden signals
provide a holistic view of your deployments and help you
to identify and resolve issues. We'll walk through each of
these data types and break them down a bit more.

Logs: a primary signal
for observability

Log messages, or logs, can come from several layers

in your infrastructure or application stack. They can
come from your infrastructure (hosts, servers, routers,
or switches); from services like databases, message
stores, or orchestration platforms; and, of course, from
any applications that you write. Log entries are created
when something eventful happens in a piece of code. Or,

elastic.co

more specifically, when a certain point in the code has
been reached — a web page has been hit, an order has
been placed, or a query took too long. The way to create
a log message (let’s just call these logs now) varies
based on the programming language being used. But
they tend to be calls that look something like printf()

or System.out.println() . If you've ever tried to learn any
programming language, you've probably written a log or
seen something like this:

class HelloWorld

{

public static void main(String args[])

{

System.out.println("Hello, World!");

This code snippet would print out the ubiquitous software
phrase “Hello, World!”

https://www.elastic.co/

Actual logs will hopefully contain a bit more information.
Logs can be structured, unstructured, or somewhere in
between. They will often have a severity level associated
with them, which gives you a bit of control over how
“chatty” they are.

Logs, by their nature, are a “point-in-time” resource. They
don't often carry the context of what happened earlier in
a transaction or even all of the data associated with the
request. Logs can also be pretty chatty, especially if you
have the verbosity level turned up. Let’s break down logs
a bit further and then talk about other types of telemetry
and how they can help you see the bigger picture.

Unstructured and semi-structured logs

Unstructured, basic, or plain-text logs are basically free-
form sets of characters gathered together. They’ll often
be human-readable and might even read like sentences.
They can be single-line or multi-line in the same file,
which can make parsing tricky. You might even find a

mix of semi-structured and plain text in the same log file.

Plain-text logs don’t have any predefined structure and
are just free-form with whatever the developer thought
was important at the time. They might only consist of a
payload and, if you're lucky, a timestamp.

elastic.co

2021-04-14T14:05:58.019Z Entered <processCard>

2021-04-14T14:05:59.123Z Calling <cardValidation> with [13]

digit card number
2021-04-14T14:05:59.723Z back from luhn algorithm, passed

2021-04-14T14:06:00.123Z card starts with [37] so it's an

american express

@

In the example above, the logs are pretty easy
to read, and while it looks like the developer was
trying to delimit fields, they are all free-form.

https://www.elastic.co/

Semi-structured logs, on the other hand, have a
somewhat predefined format. For example, a log from
an Apache web server might look like this:

::1 - - [26/Dec/2020:16:16:29 +0200]
"GET /favicon.ico HTTP/1.1" 404 209

192.168.33.1 - - [26/Dec/2016:16:22:13 +0000]
"GET /hello HTTP/1.1" 404 499 "-"

"Mozilla/5.8 (Macintosh; Intel Mac 0S X 10.12;
rv:50.0) Gecko/20100101 Firefox/50.0"

At a glance, it's not obvious what’s what. The log looks
like it contains a date and a timezone offset, along with
a few other fields. The second line has more data than
the first, and now it looks like the first entry is an IP
address. In reality, each line conveys the requesting IP
address, a couple of fields for identity (which in this case
were blank, hence the -), the timestamp (inthe []),
the method and page being requested, along with the
version (in quotes), the response code, and the size of
the response in bytes. The second entry has a couple of
additional fields: the referrer (again, blank) and the user
agent, which describes the browser that the client used.

elastic.co

A more complex example comes from an entry in the
MySQL slow log:

::1 - - [26/Dec/20620:16:16:29 +6200]
"GET /favicon.ico HTTP/1.1" 404 209

Time: 2021-08-09T14:01:47.8112347
User@Host: root[root] @ localhost [] Id: 14

Query_time: 2.475469 Lock_time: 0.000287

Rows_sent: 10 Rows_examined: 3145718
use employees;
SET timestamp=1628540304;

SELECT last_name, MAX(salary) AS salary FROM employees
INNER JOIN salaries ON employees.emp_no = salaries.emp_no
GROUP BY last_name ORDER BY salary DESC LIMIT 10;

Rather than the approach taken by the Apache logs, which
rely on punctuation and whitespace to delimit fields, this
log has more of a two-dimensional approach. The lines
that start with the # provide some context. The first # is
the timestamp, the second # is identification, and the third

has some statistics. Note that each of those lines can
also be further broken down. Finally, the remainder of the
entry shows the time and the query that was slow.

https://www.elastic.co/

Log aggregation tools will often parse plain-text and semi-structured logs into individual log
entries. Semi-structured logs make it a bit easier to break down log entries into discrete
fields, but there’s still some amount of parsing that needs to be done to accomplish this.
For common formats such as the Apache and MySQL slow logs, log aggregation tools will
parse out the individual fields such as query_time and user information for the slow log. Or
the response_code and response_size_in_bytes from the Apache httpd log. In the case of
free-form or plain-text logs, you'll likely just get a timestamp (which, if not provided in the
log message, will be added at the time of import) and the payload or text.

elastic.co \ © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 7

https://www.elastic.co/

Another example of semi-structured logs is system logs

(/var/log/syslog on Ubuntu, or /var/log/messages and /

var/log/secure on CentOS), which may have any number
of formats within them.

22b056feal322c83¢7266352faB950011037bc1f17a9ec891432 error:

context deadline exceeded"

Aug 29 04:48:27 build-host-97 auditd[405]: Audit daemon
rotating log files

Aug 29 04:48:31 build-host-97 containerd: time="2021-08-
29704 :48:31.279212236Z2" level=info msg="shim disconnected"
id=f1bc5d1169ad440784

9faldeee83ch476411222748671402e2122c8d1e46210b

Aug 29 04:48:31 build-host-97 containerd: time="20621-08-
29704 :48:31.279329273Z2" level=error msg="copy shim log"
error="read /proc/self/fd/100: file already closed"

Aug 29 04:48:31 build-host-97 dockerd: time="2021-08-
29704 :48:31.279261706Z" level=info msg="ignoring event"
container=f1bc5d1169ad44078

49faBdeee83cb4764ff222748671402e2122c8d1e46210b
module=1libcontainerd namespace=moby topic=/tasks/delete

type="*events.TaskDelete"

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

Aug 29 04:48:31 build-host-97 kernel: br-bc@db7c1b74e:
port 22(veth4f2bbe6) entered disabled state

Aug 29 04:48:31 build-host-97 NetworkManager[523]: <info>
[1630212511.3521] manager: (vethd1243bb): new Veth device
(/org/freedesktop/NetworkManager/Devices/38192)

Aug 29 04:48:31 build-host-97 avahi-daemon[480]:
Withdrawing address record for fe80::d430:2dff:fe92:1516
on veth4f2bbe6.

Aug 29 04:48:31 build-host-97 kernel: br-bc@db7c1b74e:
port 22(veth4f2bbo6) entered disabled state

Aug 29 04:48:31 build-host-97 avahi-daemon[4886]:

Withdrawing workstation service for vethd1243bb.

Aug 29 04:48:31 build-host-97 kernel: device veth4f2bbeé

left promiscuous mode

Aug 29 04:48:31 build-host-97 kernel: br-bc@db7c1b74e:
port 22(veth4f2bb06) entered disabled state

@)

As you can see, logs can be formatted to be easy
to read, but when each application and service
has a different format, it is harder to aggregate
the logs from your entire application stack.

Building a data foundation for modern observability 8

https://www.elastic.co/

Structured logs

While semi-structured logs make it easier for machines to import or ingest logs, structured logs take the guesswork out
of parsing. How? They start out parsed. By leveraging JSON formatting as a logging format, the fields and their values

can be made explicit.

"current_user": "root",

"lock_time.sec": 0.000287,

"query": "SELECT last_name, MAX(salary)
AS salary FROM employees INNER JOIN salaries
ON employees.emp_no = salaries.emp_no GROUP

BY last_name ORDER BY salary DESC LIMIT 10;",
"query_time": 2475469000,
"rows_examined" : 3145718,

"rows_sent": 10,

"schema": "employees",

"thread_id": 14,

"timestamp": "2021-08-09T14:01:45.000Z",
"user_domain": "localhost",

"user_name": "root"

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

For example, if the above slow log entry had
been structured at the beginning, it would look
like this.

This newly formatted record has the same information as
the multi-line, plain-text entry, but the individual fields
have been identified and can be centrally aggregated,
searched, filtered, and examined. There’s also a benefit
when exploring via the command line as well. When this
information was in an unstructured, multi-line format, it
would have required some pretty complex command-
line skills to find all queries against the employees table,
which took more than 1.5 seconds. Now that it has
discrete fields, you can leverage command-line tools that
understand JSON, such as jq, to query and filter.

https://www.elastic.co/

Log volumes and “signal to noise”

4l Observability

Overview

Logs
Stream
Anomalies

Categories

Metrics
Inventory

Metrics Explorer

APM
Services
Traces

Service Map

Uptime
Monitors
TLS Certificates

User Experience

Dashboard

Filter by datasets

Message co...

o~

Categories

Trend

/__new
/__mnew
\ T new

/o \rnew

/o \rnew

/o \rnew

/\rnew
/N rnew
/\rnew
/N new
O\ new

_ T new
_new
/N new
T8 %

64 Settings Alertsan

Analyze in M
v ® v Feb 3,2021@ 03:00:00.00 - Feb 3,2021 @ 05:45:C |t's hard to ﬁnd the need|e
in the haystack
Category Datasets Maximum

shutting+down+gRPC+ads+server+sinces JV+is+shutting down
serversshutsdown

Terminatingduesto+java.lang.OutOfMemoryError+Java+heap+space

advertService.log

advertService.log

advertService.log

AttachsListener+INFO+co.elastic.apm.agent.util. JaxUtils+Found+JVN-specific+Op
interfacescom. sun.management .OperatingSystemXBean

AttachsListenersINFO+co.elastic.apn.agent .configuration.StartupInfosVh=Argunents+Xns16msXnx256msX
X+ExitOnOutOfMemoryError-

AttachsListener+WARN+co.elastic.apn.agent.configuration.StartupInfosDetected+usage+of+an+old+conf
igurationskey+server_urlsPleasesuse+server_urlssinstead

AttachsListenersINFO+co.elastic.apm.agent.inpl.ElasticApmTracersTracersswitchedsto+RUNNING+state
AdServicesstarting

Servicesstarted«listening+on

UNKNOWN +St reams removed

INFO+co.elastic.apm. agent.cache . WeakKeySoftValueLoadingCache+The+valuesfor+theskey+sun.misc. Launc
her+AppClassLoadere7852e922+has+been+collectedsreloading+it

error«fetching+ads+by+category
java.net.SocketTimeoutException*milliseconds+timeout+on*connection+*ACTIVE:
UNAVAILABLE+failed+to+connect+torallraddresses:

Yourscredit+card+endingexpired+on

Image: log categorization in Elastic Observability

advertService.log
advertService.log

advertService.log

advertService.log \

advertService.log
r
advertService.log L} ‘

frontend-node.log
advertService.log .
advertService.log ‘ '
advertService.log %

L]

frontend-node.log '
paymentService.log ‘

The software and infrastructure for a large application stack can generate a large volume of data: potentially multiple
terabytes per day (or much more if you turned on that DEBUG level). This stream of telemetry data adds up quickly and can
tax observability systems that don’t scale well.

https://www.elastic.co/

Logs are often a great place to look when you know that
something has gone wrong and have some idea where.
Unfortunately, issues and errors often get drowned out
by the sheer volume of data.

For observability solutions, powerful search and filtering
capabilities are crucial when sifting through large
volumes of log data. When you're running multiple hosts,
containers, and applications, centralizing telemetry

data drastically reduces triaging time and minimizes
performance issues.

elastic.co

g

Tech Tip

Schema-on-write versus schema-on-read

Whether your logs are structured or
unstructured, their insights will be derived
from your analytics and queries used against
this rich data. While schema-on-write
(indexing data during ingestion) is common
and resource efficient, having tools that
support schema-on-read (indexing raw data,
applying runtime fields at query) provides
more flexibility to operations teams when
analyzing log data. Schema-on-read allows
you to dynamically extract or query new fields
after the data has been indexed and stored.

You don’t always know exactly what is in the
data you collect. Having both schema-on-
write and schema-on-read lets you explore it
further and apply the lessons learned.

https://www.elastic.co/

Metrics: time-series data for system behavior

While logs are generated when something happens,
metrics tend to be continually updated and provide a
summary of system behavior, often over a specific time
period. As we've seen, logs can have numeric values
embedded in them, like the rows_examined from the
MySQL slow log example. Metrics are time series data
and represent resource usage or events. These metrics
could come from the operating system (CPU usage,
free memory), or they might come from applications

or services (failed requests, response time). Metrics are
always numeric and can be whole numbers or decimal.
Like logs, metrics only exist if someone had the
foresight to provision for them. Metrics need to

be explicitly gathered, calculated, and made available.
And they can only provide the details that they are
configured to deliver.

Metrics don’t just need to be programmed — an
understanding of what they signify is important, too,
because they are usually a “point-in-time” view of the
data. For example, if we track memory usage every

elastic.co

minute, everything could look fine, but under the covers
and in between those per-minute samplings, applications
may be trying to chew up more RAM and experiencing
memory allocation failures. Metrics may inadvertently
miss cyclical fluctuations, unfortunately.

Metrics also tend to lose value as they age — it might
be important to know down-to-the-minute resource
consumption for the last few days, but that level of
granularity is probably not needed for events

from six months ago.

B =

https://www.elastic.co/

There are different families of metrics related to software
and infrastructure monitoring, and you'll likely encounter
the following types of metrics:

e Counters
e Accumulators
e Utilization or ratios

e Aggregation metrics

This list is not exhaustive but should serve as a good
starting point. Let’s take a closer look at the different
types of metrics and the general use case for each,
along with some examples.

There are different ways metrics get “published” —
perhaps via an API or even via standard interfaces and
protocols (Micrometer, Telegraf, and Prometheus are
commonly used metric delivery mechanisms). How
metrics are delivered doesn’t impact what they mean.
However they are published, it's important to note that
there is definitely some “fuzziness” around the different
metric types. Data may be stored in one manner, but
accessed in another.

elastic.co

It's probably useful to use a few concrete examples

of commonly used metrics when troubleshooting
performance issues on a personal computer. Operating
systems include tools to get a high-level overview of
system performance: Activity Monitor on macQOS, Task
Manager on Windows-based operating systems, or simply
top on *nix-flavored systems or macOS.

Process Name %C i Memory Sent Bytes RovG Byies Idle Wake Ups

WindowServer :69:00.17 1.45GB Obytes 0 bytes
Activity Monitor 7 132.0 MB 0 bytes 0 bytes
Finder 2 3734 MB O bytes 0 bytes
kemel_task E 1.49 GB 0 byies 0 bytes
Jaunchservicesd X 7 6.4MB 0 bytes 0 bytes
sysmond 9 18 MB 0 byies 0 bytes
gamecontrollard 24:50.17 2.7MB 0 bytes 0 bytes
Nfification Center 14:02.19 106.4 MB 0 bytes 0 bytes
esensor 3 2397 MB 675.8 MB 968 KB
Systom Events & 5:42:04.89 1,007.8 MB 0 bytes 0 bytes
Joginwindow 2 6:00:40.89 30.6 MB 0 bytes 0 bytes
Camtasia 2021 . 2:09,37 2622 MB 0bytes 0 bytes
com.apple. AppleUserHIDDrivers 198 11MB 0 bytes 0 bytes

coreaudiod 22:58.73 27.9 MB 0 bytes 0 bytes

tocd 5:16:56.50 3.1MB 0 bytes 0 bytes

AXVisualSupportAgent .8 24:24.64 39.7 MB 0 bytes 0 bytes

Image: screenshot of Activity Monitor on macOS

A, ;
2,
-’

https://www.elastic.co/

@ elastic

= (@ oasnvoard [Metricbeat System] OverviewECS 63 Fullscreen Share

Ecs Inbound Traffic [Metricbeat System] ECS. Outbound Traffic [Metricheat System] ECS

Inbound Traffic Outbound Traffic
12 o e 10.8MB/s 9MB/s
26.718% 35.987% _ 1914% Total Transferred 1.9TB otal Transferred 1.7T8

Top Hosts By CPU (Realtime) [Metricbeat System] ECS.

61.988%

45218%

; ,
e ————————— 286.955% 9 N ———— 58.247%
———————— 257.259% 9 v I 54.483%
I 241308% 9 I 52.579%
N —— 210146% 9 L —— 38.955%
—— 204.461% O I 31.725%
e———— 200558% 9 he— 31.649%
L— 200.215% 9 I 27.367%
I 198393% O I 18.011%
d-0827ad34-dh81 @ 375% - 500%
S \ ‘ .
0]
o | L L T T T T T 1] ‘ ‘ """
Image: screenshot
of Metricbeat
s activity monitor

The first few columns of the screenshot above show the following commonly
used performance metrics for any machine:

® Percentage of CPU (% CPU)

e CPU Time s

e Memory

® Sent Bytes

® Received Bytes (Rcvd Bytes)

elastic.co | © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 14

https://www.elastic.co/

Counters

In general, counter metrics count things and are
incremented by one each time something happens. Some
common examples are things like page_faults , which
essentially track how many times an application tries

to access virtual memory that isn't loaded in physical
memory. Another good example if you're familiar with
web services is page_views — the number of times a
webpage has been accessed.

While counters usually increase over time, counters
can also be used to keep track of counts. In this case,
they might indicate things like the number of open files,
outstanding requests, or people in line.

Counters can be cumulative in that they keep track
of the value since the beginning of a process — like
when a program starts or when the host machine
was last rebooted — but they can also be based on
a set time period.

elastic.co

Accumulators

Accumulators are similar to counters, but rather

than incrementing by one, they get incremented

(or decremented) by a value when something happens.
They can also be measured by period, since startup,

or since forever. A few accumulators from the list are
sent_bytes , received_bytes ,and cpu_time . If you're
plotting out accumulators over time, make sure

that you're plotting the deltas, and not the cumulative
sum (unless that’s what you want).

Usage metrics

Usage metrics are generally “point-in-time” metrics

that get checked periodically. Examples include CPU

or memory usage, which are often shown as a gauge.
Whereas accumulators are keeping track, usage metrics
are simply the state of something at a given point in time.
It's important to note that how metrics are calculated is
different from how metrics are accessed. The memory
metric might be implemented by the system keeping track
of the actual memory allocations and releases, in which
case it's an accumulator as opposed to an overall lookup.

https://www.elastic.co/

Utilization or ratio metrics

Utilization metrics, such as the percentage_of_cpu , are a comparison between the amount of a resource that is used versus
what is available. In the example on the previous page, WindowServer was using 53.7% of the available CPU.

A quick note, though — metrics can be misleading, and it's important to know where some of them are coming from. With
CPU utilization, you might think that it's 53.7% out of 100%, but that’s not the case; if you add up the percentages on that
CPU percentage column, it's already over 160%. In fact, the way it’s calculated, this laptop actually tops out at 1,600% CPU.

Aggregation metrics

We've covered some of the fundamentals around metrics: different classifications, different ways to use them, and a couple
of caveats. What about different ways to gather metrics? Of course, you can open up top and see a snapshot of your
system, but then you’d be back in the same situation of structured versus unstructured logs, and have to parse things.

top - 18:23:30 up 27 days, 5:05, 3 users, load average: 2.89, 3.65, 4.12
Tasks: 380 total, 3 running, 376 sleeping, © stopped, 1 zombie

%Cpu(s): 35.6 us, 11.4 sy, 0.0 ni, 51.7 id, 1.0 wa, 0.0 hi, 0.4 si, 0.0 st
KiB Mem : 46196592 total, 2954876 free, 32994452 used, 10247264 buff/cache

KiB Swap: 0 total, 0 free, © used. 12130368 avail Mem

VIRT RES %CPU %MEM TIME+ COMMAND
31.5g 18.1g 198968 .6 41.0 1983:53 java
1171124 273808 27848 5 0.6 9098:12 elastic-endpoin
17.3g 2.0g 10800 . 4.6 126:37.23 dotnet
1857800 223100 11940 . 0.5 180:00.54 apm-server
1989376 112728 28344 . 0.2 266:49.29 dockerd
1569192 44164 4572 0.1 355:04.62 containerd
335496 67844 17296 0:01.42 node /app/serve
1699080 715608 6824 filebeat
1290816 436736 10488 node
10.3g 47432 18156 node /app/serve
311004 49828 17028 node /app/node_
1744392 66664 8424 metricbeat
334628 67448 3156 celery
55532 1004 548 auditd
713568 8648 4684 containerd-shim
310716 50608 17016 node /app/node_
713568 8568 4900 containerd-shim
713824 8800 4772 S containerd-shim

PID USER
packer
root
root
packer
root
root
root
root
packer
root
root
root
root
root
root
root
root
root

PEOOLPOOEOEEEEEOE e e o[

NNOOOWWOHOOO BN

Image: top running in a terminal

elastic.co | © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 16

https://www.elastic.co/

Luckily, many common services provide APIs or other interfaces that allow you to poll to retrieve
metrics; simply check the documentation for the service in question. In addition, there’s also a
hybrid type of metrics: aggregation metrics.

Aggregation metrics are good when you don’t want to know the exact metric value at a single
point in time (for example, CPU utilization), which might require you to grab the value(s)

more often than you'd like. Instead, services provide aggregated metrics. You get the average
CPU usage for the past 10 minutes versus the CPU usage every 10 seconds. Aggregated metrics
have the benefit of taking up less storage space and overhead than discrete methods. In this
case, rather than one metric every 10 seconds, we have one every 600 seconds. The drawback:
the longer the time between measurements, the more likely you'll miss a significant event.

A short CPU spike in a 10-minute window might not impact the average a lot. When leveraging
aggregated metrics, it’s common to also include min() and max() aggregations for the metric,

in addition to the avg() .

Like logs, metrics only tell part of the story. They are simply data points without context. When
you start looking at logs and traces together, you can start to see a combined view. And now
you're able to see the bigger picture (like what actually happened when the CPU spiked).

elastic.co | © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 17

https://www.elastic.co/

Traces: end-to-end visibility into your application

Logs and metrics show interesting events that have happened in your systems and key performance indicators of resource

utilization. However, they don’t show where your applications are spending their time. This is where application performance
monitoring (APM) comes in. APM traces show what your applications and services are doing.

Generally, traces are depicted in what'’s called a waterfall view as a distributed trace. A distributed trace shows the
path transactions (or requests) take through your system. These transactions include calls to microservices and other

applications, as well as requests to data stores and other external services. The waterfall shows nested calls, broken down
into spans for each service. It may also include additional function calls within a service, as shown below.

elastic s}
@ obenebity APM Sevices fomendum Tansactons

63 Setings ™ Anomaly detection Alertsand rules v B
Trace sample < 1 of 10 >

Investigate v/
7monthsago 313 ms (100% of trace) | hitpiffrontend-js:3000/cart Chrome (86.0.4240.198)

Timelne Metadata Logs

o © /place-order 313 ms

Longtask(self) 89 ms

POST /api/cart/checkout 308 ms

“ WTTP 21x POST [checkout 214 ms

% OK /hipstershop.CheckoutService/PlaceOrder

prepar
—
getUserCart 121ms
—-—
ipstershop.CartService/GetCart 12
v -
~ Getcart sams

'sAndShippingQuoteFromCart 26 ms

1
© GetCartAsync 21ms
-
prepOrdertems 70ms
vs -
Getproduct 70ms
[]

Ihipstershop.ProductCatalogService/GetProduct 39 ms

0K Jhipstershop.ProductCatalogService/GetProduct 759 s

GetProduct 670 s

Image: distributed trace showing service call interactions

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

Building a data foundation for modern observability 18

https://www.elastic.co/

While logs and metrics need to be explicitly implemented,
traces usually require you to add configuration code to your
applications and services to enable them. This enablement
process is called instrumentation. Once your services are
instrumented, you can see where your applications are
spending their time. The more of your applications and
services that you instrument, the more you can leverage
distributed tracing and follow transactions as they
propagate across your application stack.

Application traces can also detect and visualize the
dependencies between applications and internal or external
services and can be used to gauge the overall health of
your applications.

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

g

Tech Tip

APM needs to be cost-effective

Application performance monitoring (APM)
and the distributed traces it generates are
among the most important signals in modern
observability. From the moment a user
starts interacting with the application until
they have achieved their desired results,
APM tracks their experience through its
distributed traces.

However, the cost (time and complexity to
instrument applications) often limits where
and how often APM is deployed. The advent
of auto-instrumentation from CNCF projects
like OpenTelemetry makes instrumenting
your applications easier and lowers the
overhead. Finding a more cost-effective APM
tool may allow your teams to monitor and
manage a broader set of your applications,
including dev environments (which are
sometimes ignored due to cost).

Building a data foundation for modern observability

19

https://www.elastic.co/

Transactions

Transactions are events that correspond to a logical
unit of work. They are often associated with an
incoming request or similar task for a monitored service.
Transactions can include multiple spans as well as
additional attributes, like data about the environment in
which the event is recorded as shown below.

In the context of APM, transactions usually refer to web
transactions and are inclusive of all activity from the time
a request is submitted to when a response is received.

Transactions have additional attributes associated
with them, like data about the environment in which
the event is recorded:

Service: environment, framework, language, etc.
Host: architecture, hostname, IP, etc.

Process: args, PID, PPID, etc.

URL: full, domain, port, query, etc.

User: (if supplied) email, ID, username, etc.

elastic.co

HTTP Request Response

A few examples of transactions include:

e Arequestto your server
e Abatchjob
e A background job

Spans

Usually depicted in horizontal bars in the waterfall view
of an APM analysis tool, spans are the individual units
or pieces of the workflow. These segments are the core
of distributed tracing. Spans measure from the start to
the end of an activity and contain information about the
execution of a specific code path.

Common attributes of a span include:

e Starttime
e Finish time
e A name

e Atype

https://www.elastic.co/

Application trace data also serves as a mechanism to
centralize errors and exceptions, which lowers mean time
to detection (MTTD). It also allows you to quickly triage and
resolve issues, lowering mean time to resolution (MTTR).

When instrumenting your code for APM, you'll usually have
the option to enrich the instrumentation as little or as much
as you'd like. For example, you can add custom transaction
definitions or enrich your traces with custom metadata.

advertService elasticsearch

N

cariService

L

currencyService

a
D

cdn jsdelivr.net:443 6o}

emailService
Js g
> checkoutService #
frontend-rum L]

]

4 paymentService
frontend-node

shippingService

productCatalogService
A

recommendationService

Image: connections and health indicators

elastic.co

Tracing can also help you gauge the end-user experience
holistically and within your application environment.

The request isn’t done just because a service sent a
response; it still has to be rendered in the browser. Where
traces may fall short is around visibility to third-party
services and the user’s interactions on the internet,
including their browser. If these additional steps are done
inefficiently, you may end up with unhappy users (or
worse, former users).

./

postgresql

https://www.elastic.co/

Continuous profiling: the fourth pillar of observability

Alongside logs, metrics, and traces, profiling adds a fourth and newer signal to observability.
Profiling offers a method of analyzing a program or code to identify which parts are using the
most resources — down to a single line of code.

Continuous profiling is a type of round-the-clock profiling. Through continuous profiling,
you can profile every line of code in your machine and in different languages. And if the
profiling tool can work with minimal resource overhead, it can be used both in development
and in production. Continuous profiling provides visibility into the bigger picture of your
code’s resources over time and helps eliminate guesswork when debugging and fixing issues.

Profiling tools typically provide developers with a few key summaries, low-level
visualizations, and data types as seen next.

elastic.co

https://www.elastic.co/

Stacktraces

Continuous profiling depends on stacktraces, which are a snapshot of the call stack of an application at a specific
moment in time. A stacktrace serves as a historical record of a call stack and allows you to trace the sequence

of function calls that the program has made up to that point. They’re a simple roadmap that explains what happened
on the road from point A to point B.

2024-04-04 19:40:00 2024-04-04 19:45:00

Python: flask_route_interest
[calculator/interest.py#31

Python: dispatch_request
[usr/local/lib/python3.7/dist-packages/flask/app.py#1796

Python: full_dispatch_request
Jusr/local/lib/python3.7/dist-packages/flask/app.py#1820

Python: wsgi_app
/usr/local/lib/python3.7/dist-packages/flask/app.py#2525

Python: __call__
/usr/local/lib/python3.7/dist-packages/flask/app.py#2548

Python: execute
Jusr/local/lib/python3.7/dist-packages/werkzeug/serving.py#322

Python: run_wsgi
[usr/local/lib/python3.7/dist-packages/werkzeug/serving.py#335

Python: handle_one_request
Jusr/lib/python3.7/http/server.py#414

Python: handle
Jusr/lib/python3.7/http/server.py#426

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

ﬂjﬁwﬂﬂu | nn

2024-04-04 19:50:00

i

Image: an example
of a stacktrace

Building a data foundation for modern observability 23

https://www.elastic.co/

Flamegraphs

For a visual representation of a stacktrace, developers turn to flamegraphs. In a flamegraph, each function of a stacktrace
is represented with a rectangle, and each rectangle’s width represents time. The more time spent on a function, the wider
the rectangle. In a flamegraph, rectangles are stacked vertically; the number of stacked rectangles represents each stack’s
depth (or the number of functions called to reach its current function).

Baseline flamegraph Comparison flamegraph

() container.name :"checkout-a" (%] v Last 15 minutes ‘ 2l ‘ % () container.name : "checkout-b" Qe {}

Format m Rel Normalizeby Time v Flameg raphS
allow developers

to quickly identify
the functions that
are consuming

the most resources

Python: _process_queur

P! Python: _process_queu

Python: _p Pythor Pyt

(Y | (P Py 1 oyt | P
. NSyuriy
D || | e | vz | through an easy-to-
T L II 11K M

Pyth | Python: l

Bill} o= i understand graph.

Python: send_respo £ | Python:cl || || pytho |

Python: flask_route_interest() in interest.py#32 —Python: write() in servin Python: cl l l ‘ Pylhor' |

Total CPU @: ~23.63% vs 61.36% (+37.73%)

|

|1 R AR |

Self CPU @: ~4.93% vs 3.66% (-1.27%) D -t Pyt P P Pythonilog_re P ¢ | Python:er [|1 pyen || Il | |

Samples: ~259 vs 1677 (+547.49%) thon: fina PylrIP‘ IlFlethon: Pythc P || [Python: e Hl [Py Il I , ‘ H ‘ IH

Python: flask_route_interest() inin Annualized CO2: ~0.57 Ibs / 0.26 kg vs 3.68 Ibs / 167 kg (+547.49%) thor Pyt By ll[e | || ~ ey ele e | 1] ewn ey | ||| || oy [| Mt Il

Python: info() in _ir Python pytl Annualized dollar cost: ~$5.36 vs $34.69 (+547.49%) o eyt [|o ||| ell | [even ol fe Pl DN e L i Ml I

Python: log(lin i ¢ py e G N G e A T A [| bl I [Il

Python: h. Pythan: e o — LR 0L TR M NSl TR O s T [| \
Python: ¢ | Pytho ©'Right:cick topin tooltip) 1R ORGSR T AT |
Python: | | Py i [z 11 TG |11 T R TRt A |
pytnon: | | ||| Il eython: wri()in & | 1] C WUV ORDOE SR T 101 | lI/111 |
LA (1] | [python:gete |||] 111/} I 10 O AL | Il |l |
evt[|E[{[[[11] Il eythons uei) &[] I 0TI 00 0N TRROI D LI (@E | Il |

elastic.co | © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 24

https://www.elastic.co/

Given that functions are the building blocks for an application or service, this visibility into its resource usage can be
crucial for performance and optimizing applications. More sophisticated profiling tools may present information such
as the most frequently sampled functions, broken down by CPUs, annualized cost estimates, and annualized CO2 to
understand energy efficiency.

Universal Profiling © Give feedback

TopN functions Differential TopN functions

() container.name :"interest-calculator-service" [x] f@ ~ Last15 minutes C Refresh

Indicates how much CPU time was
spent by the code in the function

body, excluding the work done by
functions that were called by it

= &
 Rank ~ Function ~ Samples v Self CPU @ ~ Total CPU @ ~ Annualized CO2 o ~ Annualized dollar ¢

selfCPU

e 1 python3.7: 215 6.65% 6.71% 0.47 Ibs / 0.21 kg
lookdict_unicode_nodummy

../Objects/dictobject.c#854

g 2 python3.7: _PyType_Lookup 138 4.27% 5.66% 0.31bs/0.14 kg
../Objects/typeabject.c#3084

Ve 3 python3.7: 136 4.20% 9.03% 0.31bs/0.14 kg
_PyObject_GetMethod

../Objects/object.c#1137

v 4 Python: flask_route_interest 127 3.93% 63.40% 0.281bs / 0.13 kg
interest.py#31

e 5 python3.7: pymalloc_alloc 104 3.21% 3.21% 0.231bs /0.1 kg
../Objects/obmalloc.c#1409

7 6 Python: _getitem__ a5 2.94% 31.04% 0.211bs / 0.09 kg
o0s.py#679

Image: this topN functions view shows the most frequently sampled functions, broken down by CPU time, annualized
CO02, and annualized cost estimates

elastic.co | © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 25

https://www.elastic.co/

Synthetic monitoring: understanding customer journeys

Logs, metrics, traces, and profiling are generally “after-the-fact” tools, which are helpful when trying to resolve issues, solve
problems, or identify areas that can be improved in an application ecosystem. The downside is that when you’re using them to
investigate something, it usually means that a problem has impacted your customers.

4l Observability Network Requests Legend Seiect an item to apply filter . .
Q sesrch MHM. MCSS MFot MUS M image M Meda M XHR M Other Monitoring customer
Ol Queued / Blocked DNS Connecting Sending request [l Waiting (TTFB) jOUrneys and being
Showing 299 of 299 network requests
Alerts oms 2000 ms 4000 ms 6000 ms 8000 ms 10000 m proaCtive sounds like the
Cases 144 thimg c p ge/uplo...silo/current (- t B * ree e .
s @img comfmib-ph geluplo...silofcurrent n right strategy to me!
Logs 146 &img com/mib-phot ge/uplo...silo/current B
Stream 147 % google-analytics.com/collect?v=18_v=|..&2=241238613 *
anaies 148 1img b-photos, ge/uplo...silo/current m
149 sb.scorecardresearch.com/r2?¢2=300...om%2Fdodgers | |
Categories
154 % dn2 33across com/ns/?oid=R97&krandom=1057745864 -
A ::g llv:r_u flem.g d_ovﬂocllel nn:ln‘n:? - P [
E2NTNMzAY JwMMzMTQYNTQ =
Inventory Queued / Blocked: 0.137ms -
Metrics Explorer DNS: 8.748ms]
Connecting: 1.090ms
demid O TLS: 2.364ms g
® Waiting (TTFB): 51.320ms ||
APM # Content downloading (HTML): 327.769ms ||
Services 158 7 syndication.twitter.co../settings?sessi..bc634b7be547 7 .
Traces 159 % cm.g.doubleclick.net/pixei?google_n... MIMZMTQyNTQ= -
168 content.mib.com/images/head... 0/628711.png = (S8l =
Dependencies 161 { content.mib,com/images/hea.. 0/425794.png = [=
162 3 cdn.cookielaw.org/scripttemplates/6.36.... BannerSdk.js = 1
Uptime 163 A mibstatic.com/mib.com/fonts/liberation-... regular.woff [B
Uptime Monitors 164 3 em.g.doubleclick.net/pixel?google_nid=... =&google_tc= (% .
TLS Certificates 165 1 img. c p ge/uplo...silo/current 1]
Synthetics stra 166 (1 img c phot ge/uplo...sillo/current ul
167 1 mi314.com/utsync.ashx?eid=501128et=... 3D[PersoniD] 1~ .
e Eeronee 168 & dpm.demdex.net/ibs:dpid=601&dpuui...m=1684400052 2
169 % ads.rubiconproject.com/floors/8284-pbijs-floors.json
Dashboard
178 £ secu g net d/... bads_impl.js
m 1 S@Cy g L eid=31074403
172 1 dpm.demdex.net/ibs:dpid =771&dpuuid=...dpr_consent=
173 1 dpm.demdex.net/ibs:dpid=22052&dp... 536819367942 2
174 1 fei.pro-market.net/engine?site=14147... 785023314254 .
175 & cdn.bam-forms.com/2.0.0/mib/la/000164... ive/form.css [v
176 f cdn.bam-forms.com/2.0.0/mib/1a/000164... ive/form.css ji—]
177 & cdn.bam-forms.com/2.0.0/mlb/1a/0001646... live/form.js []
178) platform.twitter.com/js/tweet.bB1bBd7af .. 99e41433a. js

Image: network requests chart for synthetic monitoring

elastic.co | © 2024 Elasticsearch B.V. All rights reserved.

Building a data foundation for modern observability 26

https://www.elastic.co/

Additional synthetic monitoring metrics and data vary by
vendor but could include:

e First contentful paint (FCP), which measures
initial rendering and page loading

e Largest contentful paint (LCP), which measures
loading performance

® Cumulative layout shift (CLS), which measures
visual stability, transfer size (size of fetched
resource), object weight, and network requests

The great thing about synthetic monitoring is that it can be
completely automated and run on your schedule: you don't
need human users to interact with your applications.

It’s a proactive monitoring system that allows you to test
applications, detect performance issues, and address
application weaknesses before a product launches. Plus,
synthetic monitoring can help you execute tests on demand
or at regular intervals, providing a continuous monitoring
solution that can help you ensure your systems are delivering
great customer experiences, all day, every day.

Ultimately, infrastructure monitoring and application observability
alone are not enough to reliably predict end-user experience:
these insights are only available by simulating the actual user
experience, which is what synthetic monitoring provides.

elastic.co | © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 27

https://www.elastic.co/

OpenTelemetry: the future of observability

OpenTelemetry and its impact on
observability data

One of the main challenges with observability data
and telemetry is its diverse nature. Every application,
environment, and organization is pretty unique in terms]
of the technologies they use, manage, and interact
with. How do you bring together all this operational data
from a variety of sources so you can easily troubleshoot
and analyze the performance of your applications?

For many organizations, the answer lies in OpenTelemetry,
an open source project and collection of APIs, SDKs, and
tools. OpenTelemetry helps you instrument, generate, and
collect telemetry data (metrics, logs, and traces), allowing
your team to process and securely transmit all your
telemetry data in a consistent format.

elastic.co \ © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 28

https://www.elastic.co/
https://opentelemetry.io/

And since its inception in 2019, OpenTelemetry has
become the industry standard in cloud-native
infrastructures to collect and transfer high volumes

of observability and monitoring data. It can be used with
a variety of vendors and tools, including open source
tools and commercial offerings.

Open standards with Semantic ‘
Conventions (SemConv)

What’s most important from a data standpoint is that
OpenTelemetry defines Semantic Conventions: a common
naming scheme for observability signals that makes it easier
to consume and correlate all your data.

Just as OpenTelemetry provides a standard way to
instrument applications, SemConv provides a standardized
naming convention (schema) for your codebase, libraries,
and platforms to help generate a consistent telemetry format.
OpenTelemetry’s SemConv currently cover: events data, logs
data, metrics, traces, and resources.

elastic.co

=]
Tech Tip

Origins of OpenTelemetry

A vendor-neutral, open source
framework for collecting and
exporting telemetry data,
OpenTelemetry was formed by
merging two other open standards,
OpenTracing and OpenCensus.
OpenTelemetry provides libraries
and APIs for instrumenting code
and collecting data, as well as tools
and integrations for analyzing,
visualizing, and storing the data.

https://www.elastic.co/
https://opentelemetry.io/

SemConv help organizations solve a common problem: too 2024 Observability Landscape
often, teams spend unnecessary time transferring siloed

data or transforming data that’s structured in different OpenTelemetry expected to be the future
schemas. Valuable time that could be spent identifying of observability data
problems and finding solutions.

o
7 !5 o
Another big benefit of SemConv is the decoupling

of vendor-specific semantics. With OpenTelemetry’s
SemConv, data users can avoid vendor lock-in of their of organizations are evaluating
data. They can easily move between observability OTel, 'e>'<perimenti_ng with it, or
solutions without the need to adapt their data collection TENR e 0 [PIeel Telen
as long as the solutions are OpenTelemetry compliant.
SemConv’s common schema for telemetry data aims 8 7 %
to help make widespread OTel adoption frictionless
across vendors.
of respondents expect OTel to

be the standard for observability
data in three to five years

A recent survey conducted by Dimensional
Research across 500 observability decision
makers showed that 87% of respondents
expect OpenTelemetry to be the standard for

m observability data.
.f..'-

Source: “2024 Observability Landscape: A survey

of Observability decision makers,” survey conducted

by Dimensional Research and sponsored by Elastic

elastic.co \ © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 30

https://www.elastic.co/
https://elastic.co/observability/state-of-observability-report
https://elastic.co/observability/state-of-observability-report

Future of OpenTelemetry and SemConv with Elastic Common Schema (ECYS)

Having a set of agreed-upon vocabulary is key to the future of modern observability. Most observability
practitioners and vendors are subscribing to the notion that OpenTelemetry will be the de facto
standard for telemetry data in the near future and thus SemConv in OpenTelemetry needs to be this
shared vocabulary.

The Elastic Common Schema (ECS) has been a largely dominant standard for the logs and security
domains. That is why Elastic contributing ECS to the OpenTelemetry project has been pivotal to
converge toward a common schema for observability and security data handled by OpenTelemetry and
to accelerate the project’s adoption within the industry.

P

elastic.co \ © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 31

https://www.elastic.co/
https://www.elastic.co/blog/ecs-elastic-common-schema-otel-opentelemetry-announcement

Building a unified observabllity
platform with your data

As you can tell from our review of modern observability and telemetry data, there are many
different types, each offering a piece of information and visibility into your environment and
your application’s performance.

But to get true value and insights from your telemetry data, you will need a unified observability
platform that brings it all together, enabling you to do more effective root cause analysis to resolve
real-time issues or to archive your data for future analysis, exploration, and optimization.

By bringing all of your telemetry and observability data together on a unified platform, you will be
setting the foundation to truly understand application performance and pave the way for more
sophisticated capabilities like APM, AlOps, generative Al, and business observability. It’s the first
step to modern observability, which accelerates problem resolution and delivers unified context and
correlation across all your data, at scale. Want to learn more about APM and distributed traces?
Read our new ebook: An introduction to APM: the what, why and how.

elastic.co \ © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability

32

https://www.elastic.co/
https://www.elastic.co/pdf/elastic-an-introduction-to-apm-the-what-why-and-how.pdf

POy,
el

Bt

Elastic Observability: an open
and extensible observability
solution built on Search Al

Start here

If you're considering a modern and unified observability platform, Elastic Observability is the ideal
solution to get started collecting and exploring all your telemetry data. It's a platform made

to work with data built from open standards and captures all your logs, metrics, and data at scale.
Elastic Observability offers traces, continuous profiling, synthetic monitoring, and APM under
one unified solution.

Start a free trial of Elastic Observability to gather and visualize your telemetry data and improve
your users’ experience. Visit to learn more.

\ © 2024 Elasticsearch B.V. All rights reserved. Building a data foundation for modern observability 33

https://www.elastic.co/
http://elastic.co/observability
http://elastic.co/observability
https://www.elastic.co/observability

