
elastic.co

Leveraging observability
to build better applications
What is observability?

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 2

Introduction to observability..3
Why observability matters in modern DevOps..5
The evolution of software architecture and cloud technologies....................................... 6

Monitoring and logging also need to evolve.. 8

Observability brings insights from your application telemetry data................................. 9

Considerations for an enterprise observability solution..10
Efficient ingest and storage of all your observability data...10

Analyzing all your observability data for actionable insights...17

A case for a unified observability solution and avoiding tool silos................................. 22

What can unified observability do for me?...23
Observability solution checklist..24
Getting started with Elastic Observability...25

Table of contents

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 3

Introduction to observability
The concept of observability dates back to the mid-20th century, where it was
originally used in control theory to describe how the internal states of a system
can be inferred from knowledge of the system’s external outputs. While the term is
still used in the mathematical context, today it is commonly used in the context of
infrastructure, service, and software application stacks.

Software systems are usually designed and described with certain functional
requirements that specify what the software should do. These might include
specific interaction or user stories, like “when a user enters a valid user ID and
password pair, they should get logged in.” Or they might be a little more specific,
such as “if an item has zero stock, it should not be able to be put in a cart.” These
requirements might not all be written down in the same manner that they would
have been when software development followed a strictly waterfall approach,
but rather implemented as tests in test-driven development or agile approaches;
however, the requirements are still there.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 4

Adjacent to functional requirements are non-functional requirements (NFRs). NFRs
tend to be the kind of things you can’t quite put your finger on to specify, but rather
have more of a basic understanding — an “I don’t know what art is, but I know
it when I see it” kind of thing. Non-functional requirements are also often called
*-ilities: usability, availability, scalability, and maintainability are some examples. If
the “checkout” button moves all around the page, or the dropdown menus make it
impossible to click the sub-menus because they disappear, then that’s a strike against
the usability NFR. If your site crashes frequently, that goes against availability. You’ve
probably noticed that observability is also an *-ility, and it can actually help gauge
some of the other NFRs.

For many organizations, observability is becoming a critical initiative as companies
increasingly digitize and adopt cloud technologies, which dramatically increases the
runtime complexity of applications. In this ebook, we’ll walk you through some concepts
and considerations for observability:

How software architecture and cloud technologies have evolved

Who can benefit from observability and why it’s even more
important today

What an observability solution should include

What a unified observability platform can do for you

And finally, we’ll wrap up with important things to consider when researching an
observability solution and how to get started.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 5

Why observability matters in
modern DevOps
During the era of data centers and monolithic applications, production changes
were infrequent and planned. Dependencies were easily understood and overall
application health could be determined by monitoring the variance of a few known
metrics: known unknowns.

With the distributed nature of modern applications today, no single team or
individual has a complete picture of all the dependencies. Telemetry data (metrics,
logs, and traces) is often siloed in different tools. Developer and operations teams
are spending too much time triaging problems due to swivel-chair investigations,
resulting in a higher mean time to resolution (MTTR). To address this increasing
application complexity, you’ll need more data to truly understand your environment
and your users’ experience.

The first step towards observability is monitoring: gathering the logs, metrics,
and application traces from your infrastructure, services, and applications. Basic
monitoring data allows you to answer key questions about your application
ecosystem, such as “which of my servers are over utilized?” or “which applications
have high response times?” An observability solution can help you extract even
more information from your monitoring data — allowing you not only to see the
internal state of your systems, but also help you uncover unknown unknowns: the
things that may be going wrong that you didn’t even know to look for.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 6

The evolution of software architecture and cloud
technologies

Software and hardware deployment models have evolved over the last few
decades. What started out as monolithic applications with lengthy, brittle code,
migrated to client-server and then N-tier architectures. This was the rise of
modularity in software development and application architecture. And with the
advent of C++ and more programmer-friendly third-generation programming
languages, the individual programs in these topologies became smaller and less
complex than their monolithic predecessors. The next step, service-oriented
architecture (SOA), was more evolutionary than revolutionary. SOA added
definition around how to break up applications, and introduced the concept of
pooling small, discrete units of functionality (services) to deliver applications.

Why observability matters in modern DevOps

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Third-generation_programming_language

elastic.co Leveraging observability to build better applications | 7

The software deployment model evolution really couldn’t have happened without
parallel advancements in hardware utilization. Monolithic and even early client-
server and N-Tier applications ran on bare metal. A server had one operating
system and ran one application — an architecture that was not really scalable
when talking about SOAs, which could have dozens of different services.
Hypervisors enabled virtualization on those same machines and made it possible
to run several virtual machines (VMs) on a single host, paving the way for SOAs.

We’re still in the middle of a software evolution. The current phase includes
microservices and serverless technologies, both on premises and in the cloud.
This transition to microservice architectures removes the brittle interfaces of SOA
deployments that often impact software iteration and evolution.

In the lock-step evolution of software architectures and deployment models, the
popularity of microservices and the concept of cloud-native computing have
grown in parallel. Cloud-native doesn’t mean taking your application and throwing
it up on a cloud provider, but rather an overall evolution of the philosophy of
software development and deployment. The goal is software that can scale user
capacity up or down based on demand. Cloud-native also enables an organization
to be more agile, allowing a continuous integration and deployment cycle.

While virtualization paved the way for N-Tier and SOAs, it wasn’t quite right for
microservices: VMs still need to be provisioned, complete with an OS. The next
step in the hardware deployment model was containerization and orchestration
(usually with Kubernetes or a derivative), which was ideal for microservices
and cloud-native models. Containerization and Kubernetes allows for dynamic
deployment of workloads and was designed for cloud-native architectures (load
balancing, scaling, upgrades, and more).

Serverless or Function as a Service (FaaS) technologies take things even a step
further, relying on short-lived, ephemeral operations run in response to events.
There’s no need for the complexities of a microservice environment. Serverless
technologies have sprung up at an increasing rate, providing an on-demand,
lower-cost alternative to the more complex infrastructure needed by full-blown
microservice ecosystems.

Why observability matters in modern DevOps

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 8

Monitoring and logging also need to evolve
The smaller footprint of monolithic and N-Tier applications, combined with
infrequent changes, makes them inherently easier to monitor. While the
applications themselves were bigger and more complex than discrete microservice
components, we only had to worry about log files and metrics from a few
machines and services.

Why observability matters in modern DevOps

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 9

Virtualization and DevOps shifting to the right is really changing the software
development landscape. The higher resource utilization made possible by
virtualization and containerization increases monitoring complexity. Not only do we
need to monitor the base machines that are running the hypervisor or orchestrator,
but we also need to monitor the individual “hosts” (containers and VMs) as well as
the hypervisor and orchestrator themselves.

We should also monitor the applications running in them. Given the higher
resource utilization in containerized systems, we’re much more likely to run into
“noisy neighbors”: a situation where one container consumes too much CPU or
memory to the detriment of others. When running managed servers or serverless,
we can’t monitor the underlying infrastructure, but we can monitor service calls.

It’s no longer just client-server or a simple LAMP (Linux, Apache, MySQL, PHP/
Perl/Python) stack. Modern software applications are living, breathing things,
made up of hundreds or even thousands of different services. Any one of these
services can break your system — which leads us to the need for observability.

Observability brings insights from your application
telemetry data
As an example, imagine a process with an order processing system: transactions
are failing, but not every one. Monitoring would be able to show that something .
is wrong and even alert you. But observability would let you correlate issues .
and find that globally, only people checking out using British pounds to pay are .
having trouble. This operational insight then leads you directly to issues with .
the currency API. By investing in an observability initiative, you can intelligently
troubleshoot and correlate application issues, no matter how complex your
application environment.

Why observability matters in modern DevOps

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 10

Considerations for an
enterprise observability
solution
When a solution that aggregates, correlates, and inspects the telemetry data from
our applications and infrastructure can tell us what is actually going on within
our application environment, that’s when we have observability. Observability
is what the solution you use to evaluate that monitoring data provides. Without
telemetry data from your applications, services, and infrastructure, there is no
observability. And you will need all your data, for reasons we will discuss later.

Let’s walk through some essential capabilities for an observability solution.

Efficient ingest and storage of all your observability data
Complex software systems mean that there’s even more application data to
monitor and store. Microservices, databases, message buses, key-value stores,
abstraction layers — we should capture the telemetry data from all of these
components and store them for future troubleshooting. Data ingestion isn’t
just about proprietary parsers and importers: we also have emerging open
standards, such as OpenTelemetry, Zipkin, and Jaeger, to lean on. When reviewing
observability solutions, understand how pricing models can impact your ability to
instrument, ingest, and store data for your entire application system across dev,
QA, and production.

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability
https://opentelemetry.io
https://zipkin.io
https://www.jaegertracing.io

elastic.co Leveraging observability to build better applications | 11

Considerations for an enterprise observability solution

Typical types of application telemetry data

It’s important to gather anything and everything that you can in your application
ecosystem: infrastructure logs and metrics from the hosts, servers, VMs,
containers, pods, and the components that orchestrate them (hypervisors
and container orchestration layers). Then you will need the logs, metrics, and
availability data from the services that you produce (applications) and those
that you consume (message buses, key/value stores, and databases). And when
possible, trace data from the applications that you manage.

We go into more detail on telemetry data in a dedicated ebook, but here’s a quick
breakdown of the different types of telemetry data.

Logs

Log messages (or logs) are text that is output by an application or service when
the execution reaches a certain point in the code. Logs can be structured or
unstructured and usually indicate that something has happened — the database
started, a query took too long, an error occurred, or the ubiquitous got here
when you’re scratching your head debugging code.

Logs can be one line:

2017-07-31 13:36:42.585 CEST [4974] LOG: database system was shut down

at 2017-06-17 16:58:04 CEST

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 12

Or they can span multiple lines:

2017-07-31 13:36:43.557 CEST [4983] postgres@postgres LOG: duration:

37.118 ms statement: SELECT d.datname as "Name",

 pg_catalog.pg_get_userbyid(d.datdba) as "Owner",

 pg_catalog.pg_encoding_to_char(d.encoding) as "Encoding",

 d.datcollate as "Collate",

 d.datctype as "Ctype",

 pg_catalog.array_to_string(d.datacl, E'\n') AS "Access

privileges"

 FROM pg_catalog.pg_database d

Metrics

Metrics are numeric values that reflect some characteristic of a system. They can
be counters that increment each time something happens (for example, when a
page loads), they can be accumulators (Sent Bytes and Received Bytes), or
they can be aggregated or calculated over a period of time (system load).

Considerations for an enterprise observability solution

 ORDER BY 1;

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 13

It’s important to note that log data can also include metrics, so make sure that .
your monitoring and observability solution can readily extract metrics from your
log data without losing contextual information.

Traces

Traces show the activity and the path(s) that requests take through an application,
along with which components are calling other components or services. They .
are usually represented by a waterfall view and can show a trace for a single .
operation or a distributed trace, which can represent an entire transaction .
across multiple services.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 14

A trace can also be represented as a service map showing service connectivity.
Traces are often the first stop when debugging issues or outages. They help point
out where in the logs or which metrics might be best to review.

Security data

The lines between observability and security are blurring, with similar data being
used in both disciplines. Security data should be considered a part of a unified
observability platform. After all, security data is simply additional telemetry data
analyzed from a different perspective. The ability to triage and identify security
issues should be part of your observability solution, as well as the ability to act
upon and isolate problem infrastructure.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 15

Simplifying ingestion of your observability data

Systems and services generate telemetry data in many different ways, so it’s
important for an observability solution to guide you through the process of
onboarding all types of data. Using wizards, step-by-step instructions, or even
the central management of collectors and agents will make data ingestion more
intuitive. This level of support also helps abstract out the process; you shouldn’t
have to become an expert in a database’s metrics API to get value from its key
performance indicators (KPIs).

Logs and metrics are helpful for looking at your application from the outside, in.
They let you capture data that someone has accounted for: system metrics like
CPU or memory utilization, application-specific KPIs such as the number of hits for
a page, or logs, like “item shipped” or “file downloaded: 758 kbytes.” But they don’t
give you any information that you didn’t know to ask for or didn’t collect.

Traces can help. If logs and metrics give you a view of your application from the
outside, traces give you a view from the inside. And gathering application trace
data shouldn’t be a heavy lift. Make sure that the tools that you use to instrument
your code provide a quick getting started path, but also provide the ability to
customize what gets instrumented. You will also need to enrich your traces
with your own metadata, in addition to metadata that enhances the context and
integration information as described below.

The collection of telemetry data should be as dynamic as your application
ecosystem. If you’re running VMs, you should be able to configure the monitoring
in your base images so any VMs that spin up automatically will get included.
If you’re running in containers, make sure that the solution you choose can
automatically detect and monitor new pods or containers as they spin up, and
that it can provide the context needed to determine whether problems are
programmatic or environmental.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 16

The challenge of high-dimension, high-cardinality, and
high-volume data

The easy ingestion of data isn’t the only part of the equation. Systems, services,
and infrastructure each generate telemetry data that may have a unique shape. .
If you look at the two log examples mentioned earlier, the only datagram that’s
really in both is the timestamp. If you think about where this data is stored and
pretend it’s going into a relational database, we’d be talking about a table with a
very large number of columns and mostly sparse rows. Each metric is a dimension
— CPU, memory, disk — and each of these dimensions has values. .
Each dimension then outputs its own time-series set of data.

Perpendicular to the high-dimension data, we have high-cardinality data. .
High-cardinality means having many instances for each of the above metric
dimensions (for each host, server, pod, or container). If we continue the relational
database analogy, not only would we have a wide table, we’d also be looking at
many, many rows. The ability to search, filter, and aggregate across (and within) .
a large number of fields with an even larger number of events becomes paramount
to the success of our observability goals.

Observability data growth tends to be exponential; we’re constantly adding new
hosts, endpoints, and services. Systems should be able to handle this complexity
of growth and provide users the ability to access and analyze their data. Alongside
the ability to leverage high-dimension, high-cardinality data is the need to manage
telemetry data. Like many other types of information, observability data loses
value over time. But data that’s a year or two old can still have value. The ability to
manage how long we can keep data, and control how we can access and analyze
it, has a direct impact on how we can compare trends to the previous week,
month, or year. Since observability is all about finding the unknown unknowns,
having as much of your telemetry data available as possible is key to finding
insights and improving application performance.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 17

Other additional considerations around your observability platform include how
you get charged for it and who controls the data. Is it agent-based, based on data
ingestion or maybe based upon resource usage? As you instrument more of your
application environment or if it grows substantially, your operating expenses will
grow in kind. Do you choose to store more or less of it to control expenses in an
agent-based model? Do you ingest less data to minimize costs?

For your observability solution to work effectively, you need to collect as much
data as possible at the detail level needed. And you need to have the ability to
access your data in the ways that you want. In other words, make sure that you
own the data that you collect and that it’s available for you to analyze in whatever
way you choose. You can always remove unneeded data, but it’s much harder to
add it back after the fact.

Analyzing all your observability data for
actionable insights
Logs, metrics, and traces are, obviously, completely different kinds of telemetry
data. But a capable observability solution will put them in context and help you act
on that information. To get the most value out of an observability platform, your
solution should provide intuitive data visualization and navigation: purpose-built
interfaces that let you interact with your data in an easy and flexible way, and tools
that allow you to filter and find the logs for a certain application on a specific day.
In other words, the ability to quickly build custom metric aggregations without
needing to be a data scientist — because when a performance issue strikes, you
need to research and resolve the issue immediately.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 18

When you’re wearing your operations hat, you’re likely more interested in
infrastructure and services when exploring the overall health of your ecosystem. .
In this case, you’d likely be using infrastructure metrics as your launch point. .
This stance necessitates a high-level overview of your systems, whether it be from
an actual server or cloud instance point of view. Or you may need to look at them
through a container or pod lens. We absolutely need to be able to pivot and look
at the infrastructure from different perspectives. If you see high utilization of your
infrastructure, you need to be able to jump directly to a log viewer without losing
context so you can see the logs of exactly what you’re investigating.

With the developer hat on, you might instead start out at the service map in
application performance monitoring (APM), which shows you which services could
use some attention. This view allows you to triage any problems while keeping the
context of what you’re looking at (like unravelling a ball of yarn but keeping the
end in your grasp).

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 19

The ultimate goal? Full end-to-end observability across your application
environments with all of your telemetry data. The ability to see across your
infrastructure metrics, through the application, and all the way to the end-user
experience. And the ability to group and correlate telemetry data to your specific
needs at any point and time. A comprehensive observability platform will allow .
you to monitor day-to-day application performance, troubleshoot known issues,
and even uncover problems that you were totally unaware of.

Workflow context and correlation for troubleshooting

We’ve mentioned context a couple of times. Observability is all about using logs,
metrics, and traces together. And the metadata that events are enriched with
can make or break the ability of the solution to detect and find the root cause —
basically, a way to manage the known unknowns, or problems that you are aware
of in your application environment.

It’s not very often that you find the details of a problem in the first place that you
look. You’ll need the ability to see the logs from an application context and then to
jump directly to the relevant metrics and see the history for the host or container
that the problem application is running on. Carrying that context along the way as
you investigate can save a good deal of time, clicks, and money as you unravel .
the problem.

Addressing potential performance issues with anomaly detection,
AIOps, and alerting

Earlier we mentioned that observability helps you understand the overall health .
of your system. Viewers and dashboards help triage problems and track down
errors. But where it really adds value is letting you know proactively where .
there might be a problem. There are several buckets of other capabilities that .
an observability solution should include to enhance your troubleshooting .
capabilities and assist with unknown unknowns — the blind spots in your
application performance monitoring.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability
https://www.elastic.co/blog/the-importance-of-metadata-in-your-kubernetes-observability-initiatives
https://www.elastic.co/blog/the-importance-of-metadata-in-your-kubernetes-observability-initiatives

elastic.co Leveraging observability to build better applications | 20

Detect outliers and errors relative to baseline performance

Applications and services don’t get a constant amount of traffic. At the very .
least, it’s probably cyclical, based on the time of day or even the day of the week. .
Your observability solution should be able to detect the trends and patterns and
let you know when something falls outside the normal window.

AIOps, powered by machine learning, helps to reduce alert fatigue by correlating
differences to help reduce mean time to detection (MTTD) and mean time to
resolution (MTTR). It even takes into consideration the cyclical nature of modern
business as it runs. Being able to automatically identify things that are out of
normal range, rather than specific thresholds, reduces the time spent on manually
reviewing dashboard reports.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 21

Alerting and notifications

Alongside anomaly detection is alerting and notifications. When anomalies occur
you need to know about them in the manner that you choose. It’s not just anomalies
that you need to be alerted on, either. Often, cloud-native software is deployed
using a DevOps model: teams aren’t broken up into operations and development,
but instead wear multiple hats with code continually being built and deployed.

Proactive monitoring to meet SLOs and SLAs during development

Logs, metrics, and traces are great for finding problems, slowdowns, or errors in
your applications and services. Unfortunately, when relying on them, it usually
means that your users have experienced a problem. It’s important to proactively
and continually test key user journeys — the checkout process, the product
search, or even the action of logging on. Proactive monitoring during development
uncovers issues before they impact your users.

It’s not just your internal applications and services that you should monitor. Use
proactive observability and testing to keep an eye on any external services that
your system relies on. The services on the backend may be breaching their
service-level agreements (SLAs), impacting your service-level objectives (SLOs).

Compare, contrast, and correlate with ad hoc queries to
improve performance

A robust observability solution should be able to compare and contrast data: .
How is the performance today compared to yesterday? Is the new version
encountering more errors than the previous version? Are mobile users seeing
more slowdowns than desktop users? The ability to ask ad hoc questions of your
data, then pivot and refine your investigation, can help you understand trends
and patterns. This is one additional reason for a unified data store and storing
your high-cardinality data. Your observability solution should not only help you
compare and contrast, but it should guide you along the way and let you know
what differences may be contributing to a bad user experience.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 22

Observability helps to find unknown unknowns

Related to the detection of outliers and errors is the ability to find and resolve
problems in areas that you don’t even know to watch. Often the hardest problems
to solve are the ones that are transient and infrequent. They might arise due to
changes in environment, the application, or a combination of factors. These are
the types of problems that solidify the need to capture anything and everything,
datawise. A unified data store allows you not only to determine what was happening
at the time of the issue, but also helps you understand when unexpected events
occur by putting different signals into context and at your fingertips when you .
need to explore further.

A case for a unified observability solution and
avoiding tool silos
Quite often, organizations start out with a need for log aggregation. They get that
up and running, then decide that they should also start gathering infrastructure
metrics, so they add another tool. This process repeats again with APM. Before
long, they’ve got three or more tools to monitor their application ecosystem, along
with already siloed data stores.

While it’s definitely possible to triage and resolve issues and errors with siloed tools,
the swivel chair approach to diagnosing issues across multiple, single-purpose
tools definitely makes it harder. You lose the context and integration aspects of
a good solution. Also remember that multiple tools means that all aspects of the
overhead are multiplied as well: administration, training, and storage, to name a few.

Having all telemetry data in a single data store with the right observability platform
that scales and provides coverage across dev, stage, and production is ideal.
With the right research and investigation, finding an observability solution that
allows you to instrument and observe everything in your IT environment in a cost-
effective manner is an important goal. And gaining a true understanding of the
performance characteristics of your systems, applications, and services is critical
to increasing developer productivity, accelerating innovation, and ensuring a great
customer experience.

Considerations for an enterprise observability solution

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 23

What can unified
observability do for me?
The benefits of observability vary based on the hat you’re wearing: if you’re
looking at it from the perspective of a developer you’re going to be looking at
things differently than if you were approaching it from an operations perspective,
and different again if you’re the business owner.

While not an exhaustive list, here are some sample IT operations, developer, .
and DevOps questions that you would be able to answer with a unified
observability solution.

•	 Which servers are overloaded?

•	 What is our average response time for a given operation?

•	 Which services cost me the most on my AWS bill?

•	 What is causing some users to experience longer load times than others?

•	 Which services that we consume are nearing their SLAs?

•	 What would be a good SLO for this service?

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

elastic.co Leveraging observability to build better applications | 24

•	 What services does service Z call?

•	 Which of my services is unhealthy?

•	 Which service should I try to tune first?

•	 What is the overall user experience for my site?

•	 How has the latest change impacted performance?

•	 How has the latest change impacted stability?

•	 Should I roll back the latest change?

•	 Which version has the best performance?

•	 What logs would be interesting to look at?

•	 Are any services behaving abnormally?

In addition to these day-to-day questions, a unified observability solution can help
platform owners consolidate costs with one single platform to purchase, learn,
and maintain. Choose an observability solution that will grow and scale with your
organization over the long term.

Observability solution
checklist
As a bonus, we’ve put together a checklist of things discussed above along with
some spots for you to drop in some common services, while leaving room for you
to add your own technologies, needs, and concerns. Customize the list based
on your environment and the tools that you use. We hope that the checklist will
help you gain a better understanding of what you should consider when planning
an observability initiative. For more details, please download our Observability
solutions: An interactive checklist available online.

What can unified observability do for me?

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability
https://www.elastic.co/pdf/observability-solutions-an-interactive-checklist
https://www.elastic.co/pdf/observability-solutions-an-interactive-checklist

elastic.co Leveraging observability to build better applications | 25

Getting started with Elastic
Observability
As you embark on your observability journey, there are definitely many
considerations to think through about your application environment and needs.
While features and functions are important for your observability platform, the
openness and extensibility of your observability platform, access to your telemetry
data, and the total cost of ownership will impact your long-term success. And be
prepared for the fact that the lines between observability and security are blurring.
The same telemetry information you are collecting to observe your environment
can also be used for security insights and detecting intrusions.

Now that you’ve got a good idea of some key considerations for your observability
solution, it’s time to get started. Elastic is the only observability solution built
on a search platform that ingests all telemetry, adds context, and correlates for
faster root cause analysis, significantly reducing MTTR and increasing developer
productivity. You can start out with a free trial of Elastic Observability, start
monitoring, and begin to improve your users’ experience today!

Try Elastic Observability

https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability
https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability
https://www.elastic.co/observability?rogue=devops-gic&baymax=&storm=cta1&elektra=ebook-leverage-observability

© 2021 Elasticsearch B.V. All rights reserved.

Elastic makes data usable in real time and at scale for enterprise search,
observability, and security. Elastic solutions are built on a single free and open
technology stack that can be deployed anywhere to instantly find actionable
insights from any type of data — from finding documents, to monitoring
infrastructure, to hunting for threats. Thousands of organizations worldwide,
including Cisco, Goldman Sachs, Microsoft, The Mayo Clinic, NASA, The New
York Times, Wikipedia, and Verizon, use Elastic to power mission-critical
systems. Founded in 2012, Elastic is publicly traded on the NYSE under the
symbol ESTC. Learn more at elastic.co.

AMERICAS HQ
800 West El Camino Real, Suite 350, Mountain View, California 94040
General +1 650 458 2620, Sales +1 650 458 2625

info@elastic.co

